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ABSTRACT 

Parallel and distributed computing [multi-chip 

multiprocessor] environments are essential and utilized 

to meet the needs of a wide variety of high-throughput 

applications. Scheduling strategies are important in 

order to efficiently utilize the resources and to improve 

response times, throughput and utilization of computing 

platforms. In this paper, we present a two-level 

hierarchical method for scheduling of independent 

coarse-grained tasks in multi-chip multiprocessor 

environments. A set of jobs that is feasible on some 

uniform multiprocessor platform with cumulative 

computing capacity and in which the fastest processor 

has speed s < 1 is schedulable on an SMP composed by m 

processors with unit capacity assuming an arbitrary 

collection of jobs. A task system composed by periodic 

and sporadic tasks with constrained deadlines is feasible 

on a uniform multiprocessor platform that has S ¼ total 

and s ¼ max. With two-level architecture, the scheduler 

(master node of upper-level) proceeds with distribution 

of tasks to computing sites. While the Local Resource 

Manager (master node of lower level) assigns this task to 

an available computing node according to a given 

threshold. Comparing experimental results with those 

obtained from well known traditional scheduling 

algorithms, the effectiveness of the proposed method 

consistently shows a benefit from this approach. 

Keywords- Cluster, DAG, Grid, Multiprocessor, 

Scheduling, Network of Workstations (NOW) 

I. INTRODUCTION 

Heterogeneous computing changes a network of 

heterogeneous computers into a single computing resource 

entity. The central theme of heterogeneous computing is to 

utilize computing resources of different machine 

architectures. On one hand, many users find that the 

computers they use are not powerful enough to meet their 

purposes; on the other hand, many of the computers in a 

typical network are idle, having no job to process. This 

situation happens within a LAN, or even WAN-wide. 

Ideally, if computing resources can be shared, it could 

dramatically increase our work efficiency. The greatest 

challenge to network computing is to obtain a near-optimal  

 

 

 

 

 

algorithm to solve the mapping and scheduling problem. 

Several characteristics should be considered i.e. the dynamic 

nature of computer traffic loading, the intensity of task 

submissions, the infrastructure of the computer network and 

the fair competition for utilizing computational resources. 

II. LITERATURE SURVEY 

2.1 HETEROGENEOUS NETWORK ENVIRONMENTS 

Recent advances in software and hardware technology have 

greatly improved the performance of a Network of 

Workstations (NOW). Very often in a NOW environment, 

machines are owned by individual users whose typical 

processing needs rarely require the full capacity of their 

workstation. Conversely, some users may have 

computationally intensive tasks that are beyond the capacity 

of the workstation he or she owns. Consequently, if each 

user were restricted to run tasks within the boundaries of a 

single workstation, precious computational resources would 

be wasted. This raises the challenge of developing a load-

balancing environment to utilize the available computational 

resource more efficiently. 

The nature of a connected workstation network is 

heterogeneous. Heterogeneity takes a number of forms: 

1) Heterogeneity of a configuration, whereby hosts may have 

different processing power, memory space, disk storage, and 

so on. 

2) Architectural heterogeneity that makes it impossible to 

execute the same code on different hosts. 

3) Operating system heterogeneity, where hosts have 

different operating systems running and may be 

incompatible. 

However, for this paper, only the heterogeneity of a 

configuration was considered, in which we assume that a 

task can be executed on any computer node in the NOW. 

Besides heterogeneity, a NOW system has three other unique 

features in comparison with a multiprocessor or a multi-

computer system: 

1) Low bandwidth communication: Even when high-speed 

networks are used, the inter-node communication still causes 

bottleneck problems. Therefore, only coarse-grained or 

medium-grained parallel tasks are suitable for running on a 

NOW. 
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2) Random network topology: A NOW system connects 

workstations in a random way and its topology may change 

from time to time in practice. 

3) Multidirectional scaling: A NOW system can be scaled in 

three directions: by increasing the number of workstations, 

by upgrading the power of the workstations, and by a 

combination of both. 

2.2 DAG MODEL 

In this paper, we define a task as an independent, 

computationally intensive application sent by different users. 

A parallel task can be divided into subtasks with data 

dependence between them. By the loop-unraveling 

technique, computational loops can be subdivided into a 

number of subtasks. Usually a large class of data-flow 

computation problems and many numerical algorithms (such 

as matrix multiplication) do not have conditional branches or 

indeterminism in the program, thereby making them suitable 

candidates for subdivision. In addition, in many numerical 

tasks, such as Gaussian elimination or fast Fourier 

transforms (FFT), the loop bounds are known during 

compile-time. As such, one or more iterations of a loop can 

be deterministically encapsulated in a subtask. These 

techniques make parallel processing of a task possible. Based 

on the discussion above, a parallel task can be represented by 

a Directed Acyclic Graph (DAG), which is illustrated in 

Figure 1. In a DAG, V is a set of v nodes and E is a set of e 

directed edges. G= (V, E), where the set of vertices V= {v1, 

v2, vn} represents the set of subtasks to be executed, and the 

set of weighted, directed edges E represents communication 

between subtasks. A node in the DAG represents a subtask 

that is a set of instructions that must be executed sequentially 

without preemption in the same processor. The weight of a 

node is computation cost. The edges in the DAG correspond 

to the communication messages and precedence constraints 

among the nodes. The weight of an edge is referred as 

communication cost. Thus indicates communication from 

subtask vi to vj, and |eij| represents the volume of data sent 

between these subtasks. The node and edge weights are 

usually obtained by estimation using profiling information of 

operations such as numerical operations, memory access 

operations, and message-passing primitives. In a DAG, the 

source node of an edge is called the parent node while the 

sink node is called the child node. A node with no parent is 

called an entry node and a node with no child is called an 

exit node. As shown in Figure 1, N2 is the parent of N4 and 

N5, N4 and N5 are the child nodes of N2. N1 is the entry 

node, and N8 and N9 are exit nodes, and the line in bold is 

the crucial path of the task. 

 

Figure 1:  Task DAG Graph 

Subtask processing can either be preemptive or non-

preemptive. After a node has been selected for execution, 

non-preemptive subtask processing dictates that the subtask 

cannot be moved even if a more suitable node is available. In 

contrast, preemptive processing entails stopping the process, 

moving the subtask to the new node, and resuming its 

execution. Preemptive processing is much more costly than a 

non- preemptive transfer in two cases: First, the 

implementation and maintenance of the mechanisms 

necessary to encapsulate, transfer, and resume execution 

from this complex state are expensive. Second, since 

preemptive processing causes an overhead that is much 

greater than that of the non-preemptive variety, it is not 

obvious what performance improvement might result beyond 

non-preemptive processing. For this paper, a non-preemptive 

DAG represents a subtask structure that assumes that once a 

subtask starts on a machine, it cannot be stopped. If it is 

stopped for some unexpected reason, like machine failure, it 

has to be restarted again. 

2.3   MAPPING AND SCHEDULING ALGORITHM 

The problem of mapping and scheduling multiple tasks can 

be divided into two categories: task mapping and scheduling, 

and subtask mapping and scheduling. In task mapping and 

scheduling, independent tasks are scheduled among the 

network of workstations to optimize overall system 

performance. In contrast, the subtask scheduling and 

mapping problem requires the allocation of multiple 

interacting subtasks of a single parallel task in order to 

minimize the completion time. Task scheduling usually 

requires dynamic run-time scheduling because it is not a 

priori decidable, the subtask mapping and scheduling 

problem can be addressed both statically and dynamically. In 

this paper, a multiple task computing simulation in a 

heterogeneous environment is used; therefore both task and 

subtask mapping and scheduling are addressed. 

2.3.1 TASK LEVEL MAPPING AND SCHEDULING 

Task level mapping and scheduling considers a scenario 

where each task is independent, and there is no 

communication between them. Those independent tasks 

compete for computational resources, and the task level 

mapping and scheduling heuristics attempt to match these 

tasks with available computational entities. The task 

mapping heuristics can be grouped into two categories: 

dynamic heuristics and static heuristics. Dynamic heuristics 

can be further grouped into two categories: immediate mode 

and batch mode heuristics. In the immediate mode, a task is 

mapped as soon as it arrives. In the batch mode, tasks are not 

mapped as they arrive; instead they are collected into a set 

that is examined for mapping at prescheduled times called 

mapping events. The independent set of tasks that are 

considered for mapping at the mapping events is called a 

meta-task. A meta-task can include newly arrived tasks (i.e., 

the ones arriving after the last mapping event) and the ones 

that were mapped in earlier mapping events but did not begin 

execution. While immediate mode heuristics consider a task 

for mapping only once, batch mode heuristics consider a task 

for mapping at each mapping event until the task begins 
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execution. For immediate mode there is no mapping delay 

between mapping events, the tasks are mapped right after 

they arrive. However, as a tradeoff, since immediate mode 

can only map tasks once, its performance is not as good as 

batch mode when the arrival of tasks is very intensive.  

There are five different types of immediate mode heuristics. 

They are 1) minimum completion time (MCT); 2) minimum 

execution time (MET); 3) switching algorithm (SA); 4) k-

percent best (KPB); and 5) opportunistic load balancing 

(OLB). The MCT heuristic assigns each task to the machine 

that results in that task’s earliest completion time in order to 

balance the load. The MET heuristic assigns each task to the 

machine that performs that task’s computation in the least 

amount of execution time. The MET heuristic can potentially 

create load imbalance across machines by assigning many 

more tasks to some machines than to others. The SA 

heuristic is a combination of MCT and MET. The idea 

behind it is that when the tasks are arriving in a random mix, 

it is possible to use the MET, at the expense of load 

balancing until a given threshold, and then use the MCT to 

smooth the load across the machines. SA uses the MCT and 

MET heuristics in a cyclical fashion depending on the load 

distribution across the machines. The purpose is to have a 

heuristic with the desirable properties of both the MCT and 

the MET. The KPB heuristic is another form of a 

combination of MET and MCT. The heuristic considers only 

a subset of machines while mapping a task. The subset is 

formed by picking the m (k/100) best machines based on the 

execution times for the task, where 100/m≤k≤ 100. The task 

is assigned to a machine that provides the earliest completion 

time in the subset. If k=100, then the KPB heuristic is 

reduced to the MCT heuristic. If k=100/m, then the KPB 

heuristic is reduced to the MET heuristic. The OLB heuristic 

is very simple; it assigns a task to the machine that becomes 

ready next, without considering the execution time of the 

task onto that machine. If multiple machines become ready 

at the same time, then one machine is arbitrarily chosen. 

Three batch mode heuristics are presented here: (i) the Min-

min heuristic, (ii) the Max- min heuristic, and (iii) the 

Sufferage heuristic. The Min-min heuristic is archived by 

executing following step: 

1) For each task find the earliest completion time and the 

machine that obtains it. 

2) Within these earliest completion times, find the minimum, 

map the task to the machine. 

3) Update computational entity free time. 

4) Repeat step 1, 2, and 3 until all tasks are mapped. 

The Max-min heuristic is similar to the Min-min 

heuristic. It differs from the Min-min heuristic in step 2, 

which instead of finding the minimum the Max-min heuristic 

is to find the maximum. The Max-min is likely to do better 

than the Min-min heuristic in cases where there are many 

shorter tasks than longer tasks. The Sufferage heuristic is 

based on the idea that better mappings can be generated by 

assigning a machine to a task that would “suffer” most in 

terms of expected completion time, if that particular machine 

is not assigned to it. 

In contrast to dynamic task mapping heuristics, static 

heuristics perform task mapping statically (i.e., off-line, or a 

predictive manner). Static heuristics assume all tasks are 

known before they are mapped. The static OLB 

(opportunistic load balancing) heuristic is similar to its 

dynamic counterpart except that it assigns tasks in an 

arbitrary order, instead of order of arrival. The UDA (user 

directed assignment) heuristic works in the same way as the 

MET heuristic except that it maps tasks in an arbitrary order 

instead of order of arrival. The fast greedy heuristic is the 

same as the MCT, except that it maps tasks in an arbitrary 

order instead of their order of arrival. The static Min-min 

heuristic works in the same way as the dynamic Min-min, 

except a meta-task contains all the tasks in the system. The 

static Max-min heuristic works in the same way as the 

dynamic Max- min, except a meta-task has all the tasks in 

the system. The greedy heuristic performs both the static 

Min-min and static Max-min heuristics, and uses the better 

of the two solutions. 

2.3.2. SUBTASK LEVEL MAPPING AND SCHEDULING 

Subtask level mapping and scheduling, also referred as DAG 

mapping and scheduling, considers a scenario where each 

subtask is related, and there is data dependence between 

them. These related subtasks compete for computational 

resources, and the subtask level mapping and scheduling 

heuristics are to match these tasks with available 

computational entities and increase overall system 

performance and computational usage. In DAG scheduling, 

the target system is assumed to be a network of workstations, 

each of which is composed of a processor and a local 

memory unit; they do not share memory and communication 

between them relies solely on message-passing. The 

processors may be heterogeneous or homogeneous. 

However, DAG scheduling assumes every module of a 

parallel program can be executed on any workstation even 

though the completion times on different processors may be 

different. The workstations are connected by an 

interconnection network with a certain topology. The 

topology may be fully-connected or of a particular structure 

such as a hypercube or mesh [Y. Kwok 99]. Subtask 

mapping and scheduling algorithms exist in two forms: static 

and dynamic. As mentioned, a parallel task can be 

represented by a DAG. In static scheduling, which is usually 

done at compile time, the characteristics of a task are known 

before program execution. In dynamic scheduling, a few 

assumptions about the task can be made before execution. 

Dynamic schedulers usually offer better performance, but the 

goal of a scheduling algorithm includes not only the 

minimization of the program completion time but also the 

minimization of the scheduling overhead. Most scheduling 

algorithms are based on the list scheduling techniques. The 

basic idea of list scheduling is to make a scheduling list (a 

sequence of subtasks for scheduling) by assigning them 

some priorities, and then schedule those subtasks according 

to their priorities. The two frequently used attributes for 

assigning priority are the t-level (top level), b-level (bottom 

level), and p-level (partial level). The t-level of a node is the 

length of a longest path from an entry node to the node itself. 



Naveen Kumar Laskari, Aparna Tanam, Ranganath K / International Journal of Engineering Research 

and Applications (IJERA)                 ISSN: 2248-9622                           www.ijera.com
 

Vol. 1, Issue 4, pp. 1536-1546 

1539 | P a g e  

 

Here, the length of a path is the sum of all the node and edge 

weights along the path. The b-level of a node is the length of 

the longest path (there can be more than one longest path) to 

an exit node. Some scheduling algorithms do not take into 

account the edge weights in computing the b-level. In such a 

case, the b-level does not change throughout the scheduling 

process. This algorithm is referred to as the static b- level. 

The p-level of a node is simply the computation cost of that 

given node; also, the p-level does not change throughout the 

scheduling process, as it is illustrated in Figure 1. 
 

Table 1. T-levels, b-levels, and p-levels for the DAG of Figure 1 

 

Different algorithms use the t-level and b-level in different 

ways. Some algorithms assign a higher priority to a node 

with a smaller t-level while some algorithms assign a higher 

priority to a node with a larger b-level, or a larger p-level. 

Still some algorithms assign a higher priority to a node with 

a larger (b-level – t-level). In general, scheduling in a 

descending order of b-level tends to schedule critical path 

nodes first, while scheduling in an ascending order of t-level 

tends to schedule nodes in a topological order. The 

composite attribute (b-level – t-level) is a compromise 

between the previous two cases. The notion behind the p-

level was that by executing higher computationally intensive 

subtasks  first, the overall completion time of the task may be 

minimized. List scheduling includes both static list 

scheduling and dynamic list scheduling. In static list 

scheduling, the scheduling list is statically constructed before 

node allocation begins, and most importantly, the sequencing 

in the list is not modified. A task is usually scheduled on the 

processor that gives the earliest start time for the given task. 

Thus, at each scheduling step, the task is selected first, then 

its destination processor. The procedure of static list 

scheduling entails repeatedly executing the following two 

steps until all the nodes in the graph are scheduled: 1) 

removing the first node from the scheduling list; 2) 

allocating the node to a processor which allows the earliest 

start-time. Dynamic list scheduling takes a different 

approach. After each allocation, the priorities of all 

unscheduled nodes are re-computed, and consequently the 

scheduling list is then rearranged. In this case, the tasks do 

not have a pre-computed priority. At each scheduling step, 

each ready task is tentatively scheduled to each processor, 

and the best task-processor pair is selected. Both the task and 

its destination processor are selected at the same time. Thus, 

these algorithms essentially employ the following three-step 

approaches: 1) determining new priorities of all unscheduled 

nodes; 2) selecting the node with the highest priority for 

scheduling; 3) allocating the node to the processor that 

allows the earliest start-time or earliest finish-time. 

Scheduling algorithms that employ this three-step approach 

can potentially generate better schedules, but the tradeoff is 

the scheduling time is increased. 

Both static and dynamic approaches of list scheduling have 

their advantages and drawbacks in terms of the schedule 

quality they produce. Static approaches are better suited for 

communication-intensive and irregular problems, where 

selecting important tasks first is more crucial. Dynamic 

approaches are better suited for computationally intensive 

applications with a high degree of parallelism, because these 

algorithms focus on obtaining good processor utilization. 

2.3.3 MULTIPLE TASK MAPPING AND SCHEDULING 

 In this paper, we analyze the behavior of multiple task 

(multiple DAG) computing in a heterogeneous environment, 

therefore the objective of this research is to study multiple 

DAG scheduling. However, there is little literature in this 

area. Iverson presents a dynamic, competitive scheduling of 

multiple DAGs [IvÖ98]. In his framework, each task is 

responsible for scheduling (0f )its own tasks. Thus, there is 

no centralized scheduling authority. A task is scheduled 

without the knowledge of other tasks; the task scheduler only 

knows the current workload of the network. Iverson’s 

algorithm is based on the expectation that if each task had 

the best mapping and scheduling possible, the overall 

parallel computing performance would be optimal. 

III. PROBLEM STATEMENT 

Aiming to provide a non-preemptive scheduling to minimize 

the maximum completion time given a set of independent 

computational tasks, to obtain acceptable performance and 

allocation of application processes to the processors 

available 

3.1 EXISTING SYSTEM 

A Symmetric Multiprocessor (SMP) system consisting of m 

processors is addressed. The problem of preemptively 

scheduling a real-time task set on these systems can be 

solved in two different ways: by partitioning tasks to 

processors or with a global scheduler. In the first case, tasks 

are allocated to processors at design time with an offline 

procedure. The partitioning problem is analogous to the bin 

packing problem, which is known to be NP-hard in the 

strong sense. However, once the tasks are allocated, the 

scheduling problem is reduced to m single-processor 

scheduling problems, for which optimal solutions are known 

when preemptions are allowed. The main advantage of this 

approach is, its simplicity and efficiency. The efficiency of 

Node t-level b-level p-level 

N 1 0 36 5 

N 2 8 19 4 

N 3 6 18 2 

N 4 14 12 2 

N 5 16 11 3 

N 6 14 22 8 

N 7 11 11 6 

N 8 26 7 7 

N 9 29 1 1 
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the system depends on the frequency at which load-

balancing routines are called and on the complexity of these 

algorithms. An alternate solution is a global work-conserving 

scheduler where migration from one processor to another is 

allowed during a task lifetime.  

3.2 LIMITS OF THE EXISTING SYSTEM 

Global Scheduling algorithms are based on the concept of 

quantum (or slot) and at each quantum, the scheduler 

allocates tasks to processors. A disadvantage of this 

approach is that all processors need to synchronize at the 

quantum boundary, when the scheduling decision is taken. 

Moreover, if the quantum is small, the overhead in terms of 

the number of context switches and migrations may be too 

high. To obtain inexpensive computational cycles, grid 

technology has emerged to fulfill the needs for solving large-

scale computing intensive high-throughput applications[1], 

through the aggregation of a number of available resources. 

Task independent applications such as data mining, Monte 

Carlo, image manipulations are most suitable class of 

applications that uses a wide spectrum of techniques like 

branch & bound, integer programming, searching, graph 

theory& randomization. 

3.3   PROPOSED SOLUTION 

A method is developed, aiming to provide a non-preemptive 

scheduling to minimize the maximum completion time. We 

perform the experiment using a widely used scheduling 

simulator, then present and compare our proposed algorithm 

with two traditional well-known scheduling algorithms. The 

proposed algorithm generates in most of cases better 

solutions than the referenced algorithms in terms of the 

maximum completion times. We have developed a 

method for scheduling of task independent parallel 

applications in Multiprocessor Environments. Essentially, 

the Task Threshold-based Mapping method (TMM), tasks 

are distributed to computing nodes based on defined 

thresholds. 

3.3.1 BASIC CONCEPTS AND TERMINOLOGY 

Although many types of resources can be shared and used in 

a Computational Multiprocessor Model, normally they are 

accessed through an application running in the grid. 

Normally, an application is used to define the piece of work 

of higher level in the Grid. A typical grid scenario is as 

follows: an application can generate several jobs, which in 

turn can be composed of sub-tasks, in order to be solved; the 

Multiprocessor System is responsible for sending each sub-

task to a resource to be solved. In a simpler grid scenario, it 

is the user who selects the most adequate machine to execute 

its sub-tasks. However, in general, Multiprocessor Systems 

must dispose of schedulers that automatically and efficiently 

find the most appropriate machines to execute an assembly 

of tasks. 

3.3.2 SCHEDULING PROBLEMS IN COMPUTATIONAL 

MULTIPROCESSOR MODELS 

Rather than a problem, scheduling in Multiprocessor 

Systems can be viewed as a whole family of problems. This 

is due to the many parameters that intervene scheduling as 

well as to the different needs of Grid-enabled applications. In 

the following, we give some basic concepts of scheduling in 

Multiprocessor Systems and identify most common 

scheduling types. Needless to say, job scheduling in its 

different forms is computationally hard; it has been shown 

that the problem of finding optimum scheduling in 

heterogeneous systems is in general NP-hard. 

3.3.3 NEW CHARACTERISTICS OF SCHEDULING IN GRIDS 

The scheduling problem in distributed systems is not new at 

all; as a matter of fact it is one of the most studied problems 

in the optimization research com- munity. However, in the 

grid setting there are several characteristics that make the 

problem different from its traditional version of conventional 

distributed systems. Some of these characteristics are the 

following: 

• The dynamic structure of the Computational 

Multiprocessor Model. Unlike traditional distributed systems 

such as clusters, resources in a Multiprocessor System can 

join or leave the Grid in an unpredictable way. It could be 

simply due to loosing connection to the system or because 

their owners switch off the machine or change the operating 

system, etc. Given that the resources cross different 

administrative domains, there is no control over the 

resources. 

• The high heterogeneity of resources. Multiprocessor 

Systems act as large virtual super- computers, yet the 

computational resources could be very disparate, ranging 

from laptops, desktops, clusters, supercomputers and even 

small devices of limited computational resources. Current 

Grid infrastructures are not yet much versatile but 

heterogeneity is among most important features to take into 

account in any Multiprocessor System. 

• The high heterogeneity of jobs. Jobs arriving to any 

Multiprocessor System are diverse and heterogeneous in 

terms of their computational needs. For instance, they could 

be computing intensive or could be data intensive; some jobs 

could be full applications having a whole range of 

specifications other could be just atomic tasks. Importantly, 

Multiprocessor System could not be aware of the type of 

tasks, jobs or applications arriving in the system. 

• The high heterogeneity of interconnection networks. Grid 

resources will be connected through Internet using different 

interconnection networks. Trans- mission costs will often be 

very important in the overall Grid performance and hence 

smart ways to cope with the heterogeneity of interconnection 

networks is necessary. 

• The existence of local schedulers in different organizations 

or resources. Grids are expected to be constructed by the 

“contribution” of computational resources across institutions, 

universities, enterprises and individuals. Most of these 

resources could eventually be running local applications and 

use their local schedulers, say, a Condor batch system. In 
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such cases, one possible requirement could be to use the 

local scheduler of the domain rather than an external one. 

• The existence of local policies on resources. Again, due to 

the different owner- ship of the resources, one cannot assume 

full control over the Grid resources. 

Companies might have unexpected computational needs and 

may decide to reduce their contribution to the Grid. Other 

policies such as rights access, available storage, pay-per-use, 

etc. are also to be taken into account. 

• Job-resource requirements: Current Grid schedulers assume 

full availability and compatibility of resources when 

scheduling. In real situations, however, many restrictions 

and/or incompatibilities could be derived from job and 

resource specifications. 

• Large scale of the Multiprocessor System: Multiprocessor 

Systems are expected to be large scale, joining hundreds or 

thousands of computational nodes world-wide. Moreover, 

the jobs, tasks or applications submitted to the Grid could be 

large in number since different independent users and/or 

applications will send their jobs to the Grid without knowing 

previous workload of the system. Therefore, the efficient 

management of resources and planning of jobs will require 

the use of different types of scheduling (super-schedulers, 

meta-schedulers, decentralized schedulers, local schedulers, 

resource brokers, etc.) and their possible hierarchical 

combinations. 

• Security: This characteristic, which exists in classical 

scheduling, is an important issue in Multiprocessor 

Scheduling. Here the security can be seen as a two-fold 

objective: on the one hand, a task, job or application could 

have a security requirement to be allocated in a secure node, 

that is, the node will not “watch” or access the processing 

and data used by the task, job or application. On the other 

hand, the node could have a security requirement, that is, the 

task, job or application running in the resource will not 

“watch” or access other data in the node. 

3.4   PHASES  OF SCHEDULING IN GRIDS 

In order to perform the scheduling process, the Grid 

scheduler has to follow a series of steps which could be 

classified into five blocks: (1) Preparation and information 

gathering on tasks, jobs or applications submitted to the 

Grid; (2) Resource selection; (3) Computation of the 

planning of tasks (jobs or applications) to selected resources; 

(4) Task (job or application) allocation according to the 

planning (the mapping of tasks, jobs or applications to 

selected resources); and, (5) Monitoring of task, job or 

application completion (the user is referred to for a detailed 

description). The Grid scheduler will have access to the 

Multiprocessor Information on available resources and tasks, 

jobs or applications (usually known as “Multiprocessor 

Information Service” in the Grid literature). Moreover, the 

scheduler will be informed about updated information 

(according to the scheduling mode). This information is 

crucial for the scheduler in order to compute the planning of 

tasks, jobs or applications to the resources. Resource 

selection: Not all resources could be candidates for 

allocation of task, jobs or applications. Therefore, the 

selection process is carried out based on job requirements 

and resource characteristics. The selection process, again, 

will depend on the scheduling mode. For instance, if tasks 

were to be allocated in a batch mode, a pool of as many as 

possible candidate resources will be identified out of the set 

of all available resources. The selected resources are then 

used to compute the mapping that meets the optimization 

criteria. As part of resource selection, there is also the 

advanced reservation of resources. Information about future 

execution of tasks is crucial in this case. Although the queue 

status could be useful in this case, it is not accurate, 

especially if priority is one of the task requirements. Another 

alternative is using prediction methods based on historical 

data or user’s specifications of job requirements. 

3.4.1 TASK ALLOCATION 

 In this phase the planning is made effective: tasks (jobs or 

applications) are allocated to the selected resources 

according to the planning. 

 

3.4.2 TASK EXECUTION MONITORING 

 Once the allocation is done, the monitoring will inform 

about the execution progress as well as possible failures of 

jobs, which depends on the scheduling policy will be 

rescheduled again (or migrated to another resource). 

3.5 COMPUTATION MODELS FOR FORMALIZING 

MULTIPROCESSOR SCHEDULING 

Given the versatility of scheduling in Multiprocessor 

environments, one needs to consider different computation 

models for Multiprocessor Scheduling that would allow to 

formalize, implement and evaluate either in real Grid or 

through simulation, different scheduling algorithms. We 

present some important computation models for 

Multiprocessor Scheduling. It should be noted that such 

models have much in common with computation models for 

scheduling in distributed computing environments. We 

notice that in all the models described below, tasks, jobs or 

applications are submitted for completion to a single 

resource. 

3.5.1 EXPECTED TIME TO COMPUTATIONAL MODEL 

In the model proposed by Ali et al. [5], it is assumed that we 

dispose of estimation or prediction of the computational load 

of each task (e.g. in millions of instructions), the computing 

capacity of each resource (e.g. in millions of instructions per 

second, MIPS), and an estimation of the prior load of each 

one of the resources. Moreover, the Expected Time to 

Compute matrix ETC of size number of tasks by number of 

machines, where each position ET C [t][m] indicates the 

expected time to compute task t in resource m, is assumed to 

be known or computable in this model. In the simplest of 

cases, the entries ETC [t][m] could be computed by dividing 

the workload of task t by the computing capacity of resource 

m. This formulation is usually feasible, since it is possible to 

know the computing capacity of resources while the 

computation need of the tasks (task workload) can be known 
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from specifications provided by the user, from historic data 

or from predictions 

3.5.2 MODELLING HETEROGENEITY AND CONSISTENCY OF 

COMPUTING 

The ETC matrix model is able to describe different degrees 

of heterogeneity in distributed computing environment 

through consistency of computing. The consistency of 

computing refers to the coherence among execution times 

obtained by a machine with those obtained by the rest of 

machines for a set of tasks. This feature is particularly 

interesting for Multiprocessor Systems whose objective is to 

join in a single large virtual computer different resources 

ranging from laptops and PCs to clusters and 

supercomputers. Thus, three types of consistency of 

computing environment can be defined using the properties 

of the ETC matrix: consistent, inconsistent and semi-

consistent. An ETC matrix is said to be consistent, if for 

every pair of machines mi and mj , if mi executes a job faster 

than mj then mi executes all the jobs faster than mj. In 

contrast an inconsistent ETC matrix, a machine mi may 

execute some jobs faster than another machine mj and some 

jobs slower than the same machine mj . Partially-consistent 

ETC matrices are inconsistent matrices having a consistent 

sub-matrix of a predefined size. Further, the ETC matrices 

are classified according to the degree of job heterogeneity, 

machine heterogeneity and consistency of computing. Job 

heterogeneity expresses the degree of variance of execution 

times for all jobs in a given machine. Machine heterogeneity 

indicates the variance of the execution times of all machines 

for a given job. 

3.5.3 MULTIPROCESSOR INFORMATION SYSTEM MODEL 

The computation models for Multiprocessor Scheduling 

presented so far allow for a precise description of problem 

instance however they are based on predictions, distributions 

or simulations. Currently, other Multiprocessor Scheduling 

models are developed from a higher level perspective. In the 

Multiprocessor Information System model the Grid 

scheduler uses task (job or application file descriptions) and 

resource file descriptions as well as state information of 

resources (CPU usage, number of running jobs per grid 

resource), provided by the Multiprocessor Information 

System. The Grid scheduler then computes the best matching 

of tasks to resources based on the up-to-date workload 

information of resources. This model is more realistic for 

Multiprocessor Environments and is especially suited for the 

implementation of simple heuristics such as FCFS (First 

Come First Served), EDF (Earliest Deadline First), SJF 

(Shortest Job First), etc. 

3.5.4 CLUSTER AND MULTI-CLUSTER GRIDS MODEL 

Cluster and Multi-Cluster Grids refer to Grid model in which 

the system is made up of several clusters. For instance the 

Cluster Grid of an enterprise comprises different clusters 

located at different departments of the enterprise. One main 

objective of cluster grids is to provide a common computing 

infrastructure at enterprise or department levels in which 

computing services are distributed to different clusters. More 

generally, clusters could belong to different enterprises and 

institutions, that is, are autonomous sites having their local 

users (both local and grid jobs are run on resources) and 

usage policies. The most common scheduling problem in 

these models is a Grid scheduler which makes use of local 

schedulers of the clusters. The benefit of cluster grids is to 

maximize the usage of resources and at the same time, 

increase of throughput for user tasks (jobs or applications).  

3.6 MULTIPROCESSOR SYSTEM PERFORMANCE AND 

SCHEDULING OPTIMIZATION CRITERIA 

Several performance requirements and optimization criteria 

can be considered for Multiprocessor Scheduling problem 

the problem is multi-objective in its general formulation. We 

could distinguish proper Multiprocessor System performance 

criteria from scheduling optimization criteria although both 

performance and optimization objectives allow to establish 

the overall Multiprocessor System performance. 

Multiprocessor System performance criteria include: CPU 

utilization of Grid resources, load balancing, system usage, 

queuing time, throughput, turnaround time, cumulative 

throughput (i.e. cumulative number of completed tasks) 

waiting time and response time. In fact other criteria could 

also be considered for characterizing Multiprocessor 

System’s performance such as deadlines, missed deadlines, 

fairness, user priority, resource failure, etc. Scheduling 

optimization criteria include: makespan, flowtime, resource 

utilization, load balancing, matching proximity, turnaround 

time, total weighted completion time, lateness, weighted 

number of hardy jobs, weighted response time, etc. Both 

performance criteria and optimization criteria are desirable 

for any Multiprocessor System; however, their achievement 

also depends on the considered model (batch system, 

interactive system, etc.). Importantly, it should be stressed 

that these criteria are conflicting among them; for instance, 

minimizing makespan conflicts with resource usage and 

response time. Among most popular and extensively studied 

optimization criterion is the minimization of the makespan. 

Makespan is an indicator of the general productivity of the 

Multiprocessor System: small values of makespan mean that 

the scheduler is providing good and efficient planning of 

tasks to resources. Considering makespan as a stand-alone 

criterion necessarily may not imply optimization of other 

objectives. As mentioned above, its optimization could in 

fact go in detriment to other optimization criteria. Another 

important optimization criterion is that of flowtime, which 

refers to the response time to the user submissions of task 

executions. Minimizing the value of flowtime means 

reducing the average response time of the Multiprocessor 

System. Essentially, we want to maximize the productivity 

(throughput) of the grid and at the same time we want to 

obtain planning of tasks to resources that offer an acceptable 

QoS. 

MAKESPAN, COMPLETION TIME AND FLOWTIME 

In Multiprocessor Scheduling we can minimize the 

makespan and flowtime. Makespan is the time when finishes 

the latest task and flowtime is the sum of finalization times 

of all the tasks. Formally they can define as: 
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  minimization of makespan :  

   minSi ∈ Sched{maxj ∈ Jobs Fj } 

Where Fj denotes the time when the task j finalizes, Sched is  

the set of all possible schedules and Jobs the set of all jobs to 

be scheduled. Note that makespan is not affected by any 

particular execution order of tasks in a concrete resource, 

while in order to minimize flowtime of a resource, tasks that 

have been assigned to should be executed in a ascending 

order of their workload (computation time).Completion time 

of a machine m is the time in which machine m will finalize 

the processing of the previous assigned tasks as well as of 

those already planned tasks for the machine. This parameter 

measures the previous workload of a machine. Notice that 

this definition requires knowing both the ready time for a 

machine and the expected time to complete of the tasks 

assigned to the machine. The expression of makespan, 

flowtime and completion time depends on the computational 

model. For instance, in the ETC model, completion[m] is 

calculated as follows: where ready times[m] is the time when 

machine m will have finished the previously assigned tasks. 

Makespan can be expressed in terms of the completion time 

of a resource, as follows: 

Makespan = Max {completion[i]/i€ Machines} 

Similarly, for the flowtime we use the completion times of 

machines, but now by first sorting in ascending order 

according to their ETC values the tasks assigned to a 

machine. 

3.7 PROPOSED SCHEDULING MODEL 

As one of the means to obtain inexpensive computational 

cycles, grid technology has emerged to fulfill the needs for 

solving large-scale computing intensive high-throughput 

applications, through the aggregation of a number of 

available resources. Multiple users can simultaneously utilize 

any of resources interconnected to execute these large 

parallel applications. To effectively utilize hybrid 

heterogeneous computational resources, resource 

management and task scheduling are fundamental factors for 

achievements in grids. Due to wide distribution and 

heterogeneity characteristics of grid platforms, loosely 

coupled parallel applications are better suited for execution 

on this platform than tightly coupled ones [5, 6]. In 

particular, task independent applications such as data mining, 

Monte Carlo, image manipulation are most suitable class of 

applications for current design of Multiprocessor 

Environments. Scheduling task independent applications is 

still far to be considered well-established. Finding optimal 

scheduling is an NP-complete problem, and researchers have 

still resorted to devising efficient heuristics. A number of 

heuristics have been proposed based on a wide spectrum of 

techniques, including branch-and-bound, integer-

programming, searching, graph-theory, randomization, 

genetic algorithms, and evolutionary methods [3, 4]. These 

algorithms are based on diverse assumptions; they differ in 

their functionalities as well. Simulation and modeling have 

been dedicated and extensively used by professionals in 

different application fields, particularly, in the area of 

computer science. e.g., for microprocessor design and 

network protocol design, in which simulation and modeling 

have been used for decades. They are convenient and cost 

effective. In Multiprocessor computing, several widely used 

and acknowledged simulations have been commonly used to 

evaluate tasks scheduling and load balancing. In this paper, a 

promising method is developed, aiming to provide a non-

preemptive scheduling to minimize the maximum 

completion time (the schedule length or makespan) ,given a 

set of independent computational tasks to obtain acceptable 

performance is a good allocation of application processes to 

the processors available. We perform the experiment using a 

widely used scheduling simulator, then present and compare 

our proposed algorithm with two traditional well-known 

scheduling algorithms. The proposed algorithm generates in 

most of cases better solutions than the referenced algorithms 

in terms of the maximum completion times. Task scheduling 

in dynamic and heterogeneous computing environment such 

as Grid is not trivial, since major concerns that arise during 

the analysis and development of strategies for such purpose 

is to search alternatives to improve throughput and 

utilization in these computing platforms. Looking at the 

nature of task independent applications, the scheduling 

process may seem to be easy due to its simplicity. However, 

due to dynamic behavior and heterogeneity of resources, not 

only they may not provide similar performance for all 

applications, but also contention created among applications 

running on same shared resources, causing delays and 

affecting the quality of service [2] [6].  

 

Figure 2: Proposed two level scheduling method. 

IV. IMPLEMENTATION  

Given a set of independent tasks, each task of this set is 

classified into one of five defined levels, say A, B, C, D and 

E (A is most time demanding while E is less demanding), 

according to the execution time needed. Computing nodes in 

each site of grid platform are rated according to their 

computing power, that is, given MCC as Maximum 

Computing Capability of any node in a grid platform, 

computing nodes are rated and classified in a particular class 

if this node’s computing power is X% of MCC.  
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Node Computing 

Capability 

Level of 

Classification 

0%~20% MCC E 

21%~40% MCC D 

41%~60% MCC C 

61%~80% MCC B 

81%~100% MCC A 
      

  

Table 2- Level of Classification 

In order to classify a computing site, we just need to look at 

highest rank achieved by any of computing nodes inside this 

site. For instance, a site contains 3 computing nodes, with 

levels of classification B, C, and D. Thus, this site is ranked 

with level B. That is, Level Classification SITE = max level 

{node1, node2… node n} our proposed method work as 

follows. A task is distributed, and shown next to Grid 

scheduler. Based on Round Robin technique, the Grid 

scheduler selects next suitable site to the execution of that 

given task, matching a suitable site to the demand need for 

the given task. As for matching process, task ranked with 

level A is expected to be distributed to a site ranked with 

level A, while task ranked with level D is expected to be 

distributed to sites ranked with levels A, B, C and D. As 

soon as the task is assigned to a particular site, the LRM 

(Local resource manager) of that site accepts that task, and 

then assigns it to the next available computing node that 

meets such threshold. 

In experimental results as shown in below figures 3, 4 & 5 

using Task-Scheduler, we could demonstrate its viability and 

effectiveness in a distributed computing environment, where 

in the three different nodes are scheduled by scheduler.    

IN OTHER WORDS, THE PROPOSED METHOD IS AS FOLLOWS 

1. Tasks are randomly generated, and they differ among 

themselves in amount of workload, 

2. Based on the group of tasks generated, Grid Scheduler 

record tasks’ workload values MAX and MIN, according to 

the set of tasks given. 

3. Analyzing the workload of tasks, tasks are classified into 

classes based on the amount of workload contained in it. 

Similarly, computing nodes in sites of grid platform are 

completely scanned, to discover values MAX and MIN, 

according to computing nodes’ computing capabilities, so 

that these computing nodes are then classified. 

4. Tasks in queue are presented serially to the Grid 

scheduler, whose function is to send task to a selected site of 

a grid platform, corresponding the workload and existing 

computing capability available in that site. If matches, this 

task is sent to the LRM of that site. Otherwise, the Grid 

Scheduler compares with next available site, according to 

RR (Round Robin) policy. 

 5. The process is repeated until all tasks inside the queue are 

distributed to sites, emptying completely the queue. The 

main objective of our experiments is to evaluate the 

performance of TTM over well known scheduling 

algorithms, First Come First Serve (FCFS) and Shortest Job 

First (SJF). We performed our experimentation evaluations 

in the heterogeneity of grid sites, through the heterogeneity 

and various granularities of application tasks. Experimental 

results of the proposed scheduling method are obtained using 

custom simulation model. 

 

 

Figure-3: System1-IP Address: 192.168.0.2 

 

Figure 4: System2-IP Address: 192.168.0.3 
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Figure 5: System3-IP Address: 192.168.0.22 

  

V. CONCLUSION: 

Advances in computing and network technologies have 

rapidly accelerated the development of distributed 

computing. Cluster computing platforms have been built by 

interconnecting a number of homogeneous or heterogeneous 

computers. Grid technology is developed aiming at the 

sharing of resources distributed in different geographical 

locations, providing large amount of computing cycles to 

speed up the execution of parallel applications. In this paper, 

we have presented a promising yet efficient scheduling 

method in Multiprocessor Environments, in order to provide 

high throughput. Through experimental results using Task-

Scheduler, we could demonstrate its viability and 

effectiveness in such a distributed computing environment. 

VI. FUTURE ENHANCEMENTS 

As future work, the inclusion of task scheduling that 

involves communication among them can be taken up. This 

also means that apart from the considerations on the 

possibility of dependencies among tasks, the following also 

should be taken care so as to provide high levels of 

availability and reliability in the Multiprocessor Scheduling 

.The monitoring of computing node availability, Dynamic 

network traffic and Bandwidth, As well as the fault 

tolerance, which is very important on MP systems. 
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