
Naveen Kumar Laskari, Aparna Tanam, Ranganath K / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp. 1536-1546

1536 | P a g e

Hierarchical Scheduling for Multiprocessor Systems

 Naveen Kumar Laskari*, Aparna Tanam**, Ranganath K***

 *(Department of CSE, HITAM, Hyderabad, A.P

**(Department of CSE, JBIET, Hyderabad, A.P

***(Department of CSE, HITAM, Hyderabad, A.P

ABSTRACT

Parallel and distributed computing [multi-chip

multiprocessor] environments are essential and utilized

to meet the needs of a wide variety of high-throughput

applications. Scheduling strategies are important in

order to efficiently utilize the resources and to improve

response times, throughput and utilization of computing

platforms. In this paper, we present a two-level

hierarchical method for scheduling of independent

coarse-grained tasks in multi-chip multiprocessor

environments. A set of jobs that is feasible on some

uniform multiprocessor platform with cumulative

computing capacity and in which the fastest processor

has speed s < 1 is schedulable on an SMP composed by m

processors with unit capacity assuming an arbitrary

collection of jobs. A task system composed by periodic

and sporadic tasks with constrained deadlines is feasible

on a uniform multiprocessor platform that has S ¼ total

and s ¼ max. With two-level architecture, the scheduler

(master node of upper-level) proceeds with distribution

of tasks to computing sites. While the Local Resource

Manager (master node of lower level) assigns this task to

an available computing node according to a given

threshold. Comparing experimental results with those

obtained from well known traditional scheduling

algorithms, the effectiveness of the proposed method

consistently shows a benefit from this approach.

Keywords- Cluster, DAG, Grid, Multiprocessor,

Scheduling, Network of Workstations (NOW)

I. INTRODUCTION

Heterogeneous computing changes a network of

heterogeneous computers into a single computing resource

entity. The central theme of heterogeneous computing is to

utilize computing resources of different machine

architectures. On one hand, many users find that the

computers they use are not powerful enough to meet their

purposes; on the other hand, many of the computers in a

typical network are idle, having no job to process. This

situation happens within a LAN, or even WAN-wide.

Ideally, if computing resources can be shared, it could

dramatically increase our work efficiency. The greatest

challenge to network computing is to obtain a near-optimal

algorithm to solve the mapping and scheduling problem.

Several characteristics should be considered i.e. the dynamic

nature of computer traffic loading, the intensity of task

submissions, the infrastructure of the computer network and

the fair competition for utilizing computational resources.

II. LITERATURE SURVEY

2.1 HETEROGENEOUS NETWORK ENVIRONMENTS

Recent advances in software and hardware technology have

greatly improved the performance of a Network of

Workstations (NOW). Very often in a NOW environment,

machines are owned by individual users whose typical

processing needs rarely require the full capacity of their

workstation. Conversely, some users may have

computationally intensive tasks that are beyond the capacity

of the workstation he or she owns. Consequently, if each

user were restricted to run tasks within the boundaries of a

single workstation, precious computational resources would

be wasted. This raises the challenge of developing a load-

balancing environment to utilize the available computational

resource more efficiently.

The nature of a connected workstation network is

heterogeneous. Heterogeneity takes a number of forms:

1) Heterogeneity of a configuration, whereby hosts may have

different processing power, memory space, disk storage, and

so on.

2) Architectural heterogeneity that makes it impossible to

execute the same code on different hosts.

3) Operating system heterogeneity, where hosts have

different operating systems running and may be

incompatible.

However, for this paper, only the heterogeneity of a

configuration was considered, in which we assume that a

task can be executed on any computer node in the NOW.

Besides heterogeneity, a NOW system has three other unique

features in comparison with a multiprocessor or a multi-

computer system:

1) Low bandwidth communication: Even when high-speed

networks are used, the inter-node communication still causes

bottleneck problems. Therefore, only coarse-grained or

medium-grained parallel tasks are suitable for running on a

NOW.

Naveen Kumar Laskari, Aparna Tanam, Ranganath K / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp. 1536-1546

1537 | P a g e

2) Random network topology: A NOW system connects

workstations in a random way and its topology may change

from time to time in practice.

3) Multidirectional scaling: A NOW system can be scaled in

three directions: by increasing the number of workstations,

by upgrading the power of the workstations, and by a

combination of both.

2.2 DAG MODEL

In this paper, we define a task as an independent,

computationally intensive application sent by different users.

A parallel task can be divided into subtasks with data

dependence between them. By the loop-unraveling

technique, computational loops can be subdivided into a

number of subtasks. Usually a large class of data-flow

computation problems and many numerical algorithms (such

as matrix multiplication) do not have conditional branches or

indeterminism in the program, thereby making them suitable

candidates for subdivision. In addition, in many numerical

tasks, such as Gaussian elimination or fast Fourier

transforms (FFT), the loop bounds are known during

compile-time. As such, one or more iterations of a loop can

be deterministically encapsulated in a subtask. These

techniques make parallel processing of a task possible. Based

on the discussion above, a parallel task can be represented by

a Directed Acyclic Graph (DAG), which is illustrated in

Figure 1. In a DAG, V is a set of v nodes and E is a set of e

directed edges. G= (V, E), where the set of vertices V= {v1,

v2, vn} represents the set of subtasks to be executed, and the

set of weighted, directed edges E represents communication

between subtasks. A node in the DAG represents a subtask

that is a set of instructions that must be executed sequentially

without preemption in the same processor. The weight of a

node is computation cost. The edges in the DAG correspond

to the communication messages and precedence constraints

among the nodes. The weight of an edge is referred as

communication cost. Thus indicates communication from

subtask vi to vj, and |eij| represents the volume of data sent

between these subtasks. The node and edge weights are

usually obtained by estimation using profiling information of

operations such as numerical operations, memory access

operations, and message-passing primitives. In a DAG, the

source node of an edge is called the parent node while the

sink node is called the child node. A node with no parent is

called an entry node and a node with no child is called an

exit node. As shown in Figure 1, N2 is the parent of N4 and

N5, N4 and N5 are the child nodes of N2. N1 is the entry

node, and N8 and N9 are exit nodes, and the line in bold is

the crucial path of the task.

Figure 1: Task DAG Graph

Subtask processing can either be preemptive or non-

preemptive. After a node has been selected for execution,

non-preemptive subtask processing dictates that the subtask

cannot be moved even if a more suitable node is available. In

contrast, preemptive processing entails stopping the process,

moving the subtask to the new node, and resuming its

execution. Preemptive processing is much more costly than a

non- preemptive transfer in two cases: First, the

implementation and maintenance of the mechanisms

necessary to encapsulate, transfer, and resume execution

from this complex state are expensive. Second, since

preemptive processing causes an overhead that is much

greater than that of the non-preemptive variety, it is not

obvious what performance improvement might result beyond

non-preemptive processing. For this paper, a non-preemptive

DAG represents a subtask structure that assumes that once a

subtask starts on a machine, it cannot be stopped. If it is

stopped for some unexpected reason, like machine failure, it

has to be restarted again.

2.3 MAPPING AND SCHEDULING ALGORITHM

The problem of mapping and scheduling multiple tasks can

be divided into two categories: task mapping and scheduling,

and subtask mapping and scheduling. In task mapping and

scheduling, independent tasks are scheduled among the

network of workstations to optimize overall system

performance. In contrast, the subtask scheduling and

mapping problem requires the allocation of multiple

interacting subtasks of a single parallel task in order to

minimize the completion time. Task scheduling usually

requires dynamic run-time scheduling because it is not a

priori decidable, the subtask mapping and scheduling

problem can be addressed both statically and dynamically. In

this paper, a multiple task computing simulation in a

heterogeneous environment is used; therefore both task and

subtask mapping and scheduling are addressed.

2.3.1 TASK LEVEL MAPPING AND SCHEDULING

Task level mapping and scheduling considers a scenario

where each task is independent, and there is no

communication between them. Those independent tasks

compete for computational resources, and the task level

mapping and scheduling heuristics attempt to match these

tasks with available computational entities. The task

mapping heuristics can be grouped into two categories:

dynamic heuristics and static heuristics. Dynamic heuristics

can be further grouped into two categories: immediate mode

and batch mode heuristics. In the immediate mode, a task is

mapped as soon as it arrives. In the batch mode, tasks are not

mapped as they arrive; instead they are collected into a set

that is examined for mapping at prescheduled times called

mapping events. The independent set of tasks that are

considered for mapping at the mapping events is called a

meta-task. A meta-task can include newly arrived tasks (i.e.,

the ones arriving after the last mapping event) and the ones

that were mapped in earlier mapping events but did not begin

execution. While immediate mode heuristics consider a task

for mapping only once, batch mode heuristics consider a task

for mapping at each mapping event until the task begins

Naveen Kumar Laskari, Aparna Tanam, Ranganath K / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp. 1536-1546

1538 | P a g e

execution. For immediate mode there is no mapping delay

between mapping events, the tasks are mapped right after

they arrive. However, as a tradeoff, since immediate mode

can only map tasks once, its performance is not as good as

batch mode when the arrival of tasks is very intensive.

There are five different types of immediate mode heuristics.

They are 1) minimum completion time (MCT); 2) minimum

execution time (MET); 3) switching algorithm (SA); 4) k-

percent best (KPB); and 5) opportunistic load balancing

(OLB). The MCT heuristic assigns each task to the machine

that results in that task’s earliest completion time in order to

balance the load. The MET heuristic assigns each task to the

machine that performs that task’s computation in the least

amount of execution time. The MET heuristic can potentially

create load imbalance across machines by assigning many

more tasks to some machines than to others. The SA

heuristic is a combination of MCT and MET. The idea

behind it is that when the tasks are arriving in a random mix,

it is possible to use the MET, at the expense of load

balancing until a given threshold, and then use the MCT to

smooth the load across the machines. SA uses the MCT and

MET heuristics in a cyclical fashion depending on the load

distribution across the machines. The purpose is to have a

heuristic with the desirable properties of both the MCT and

the MET. The KPB heuristic is another form of a

combination of MET and MCT. The heuristic considers only

a subset of machines while mapping a task. The subset is

formed by picking the m (k/100) best machines based on the

execution times for the task, where 100/m≤k≤ 100. The task

is assigned to a machine that provides the earliest completion

time in the subset. If k=100, then the KPB heuristic is

reduced to the MCT heuristic. If k=100/m, then the KPB

heuristic is reduced to the MET heuristic. The OLB heuristic

is very simple; it assigns a task to the machine that becomes

ready next, without considering the execution time of the

task onto that machine. If multiple machines become ready

at the same time, then one machine is arbitrarily chosen.

Three batch mode heuristics are presented here: (i) the Min-

min heuristic, (ii) the Max- min heuristic, and (iii) the

Sufferage heuristic. The Min-min heuristic is archived by

executing following step:

1) For each task find the earliest completion time and the

machine that obtains it.

2) Within these earliest completion times, find the minimum,

map the task to the machine.

3) Update computational entity free time.

4) Repeat step 1, 2, and 3 until all tasks are mapped.

The Max-min heuristic is similar to the Min-min

heuristic. It differs from the Min-min heuristic in step 2,

which instead of finding the minimum the Max-min heuristic

is to find the maximum. The Max-min is likely to do better

than the Min-min heuristic in cases where there are many

shorter tasks than longer tasks. The Sufferage heuristic is

based on the idea that better mappings can be generated by

assigning a machine to a task that would “suffer” most in

terms of expected completion time, if that particular machine

is not assigned to it.

In contrast to dynamic task mapping heuristics, static

heuristics perform task mapping statically (i.e., off-line, or a

predictive manner). Static heuristics assume all tasks are

known before they are mapped. The static OLB

(opportunistic load balancing) heuristic is similar to its

dynamic counterpart except that it assigns tasks in an

arbitrary order, instead of order of arrival. The UDA (user

directed assignment) heuristic works in the same way as the

MET heuristic except that it maps tasks in an arbitrary order

instead of order of arrival. The fast greedy heuristic is the

same as the MCT, except that it maps tasks in an arbitrary

order instead of their order of arrival. The static Min-min

heuristic works in the same way as the dynamic Min-min,

except a meta-task contains all the tasks in the system. The

static Max-min heuristic works in the same way as the

dynamic Max- min, except a meta-task has all the tasks in

the system. The greedy heuristic performs both the static

Min-min and static Max-min heuristics, and uses the better

of the two solutions.

2.3.2. SUBTASK LEVEL MAPPING AND SCHEDULING

Subtask level mapping and scheduling, also referred as DAG

mapping and scheduling, considers a scenario where each

subtask is related, and there is data dependence between

them. These related subtasks compete for computational

resources, and the subtask level mapping and scheduling

heuristics are to match these tasks with available

computational entities and increase overall system

performance and computational usage. In DAG scheduling,

the target system is assumed to be a network of workstations,

each of which is composed of a processor and a local

memory unit; they do not share memory and communication

between them relies solely on message-passing. The

processors may be heterogeneous or homogeneous.

However, DAG scheduling assumes every module of a

parallel program can be executed on any workstation even

though the completion times on different processors may be

different. The workstations are connected by an

interconnection network with a certain topology. The

topology may be fully-connected or of a particular structure

such as a hypercube or mesh [Y. Kwok 99]. Subtask

mapping and scheduling algorithms exist in two forms: static

and dynamic. As mentioned, a parallel task can be

represented by a DAG. In static scheduling, which is usually

done at compile time, the characteristics of a task are known

before program execution. In dynamic scheduling, a few

assumptions about the task can be made before execution.

Dynamic schedulers usually offer better performance, but the

goal of a scheduling algorithm includes not only the

minimization of the program completion time but also the

minimization of the scheduling overhead. Most scheduling

algorithms are based on the list scheduling techniques. The

basic idea of list scheduling is to make a scheduling list (a

sequence of subtasks for scheduling) by assigning them

some priorities, and then schedule those subtasks according

to their priorities. The two frequently used attributes for

assigning priority are the t-level (top level), b-level (bottom

level), and p-level (partial level). The t-level of a node is the

length of a longest path from an entry node to the node itself.

Naveen Kumar Laskari, Aparna Tanam, Ranganath K / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp. 1536-1546

1539 | P a g e

Here, the length of a path is the sum of all the node and edge

weights along the path. The b-level of a node is the length of

the longest path (there can be more than one longest path) to

an exit node. Some scheduling algorithms do not take into

account the edge weights in computing the b-level. In such a

case, the b-level does not change throughout the scheduling

process. This algorithm is referred to as the static b- level.

The p-level of a node is simply the computation cost of that

given node; also, the p-level does not change throughout the

scheduling process, as it is illustrated in Figure 1.

Table 1. T-levels, b-levels, and p-levels for the DAG of Figure 1

Different algorithms use the t-level and b-level in different

ways. Some algorithms assign a higher priority to a node

with a smaller t-level while some algorithms assign a higher

priority to a node with a larger b-level, or a larger p-level.

Still some algorithms assign a higher priority to a node with

a larger (b-level – t-level). In general, scheduling in a

descending order of b-level tends to schedule critical path

nodes first, while scheduling in an ascending order of t-level

tends to schedule nodes in a topological order. The

composite attribute (b-level – t-level) is a compromise

between the previous two cases. The notion behind the p-

level was that by executing higher computationally intensive

subtasks first, the overall completion time of the task may be

minimized. List scheduling includes both static list

scheduling and dynamic list scheduling. In static list

scheduling, the scheduling list is statically constructed before

node allocation begins, and most importantly, the sequencing

in the list is not modified. A task is usually scheduled on the

processor that gives the earliest start time for the given task.

Thus, at each scheduling step, the task is selected first, then

its destination processor. The procedure of static list

scheduling entails repeatedly executing the following two

steps until all the nodes in the graph are scheduled: 1)

removing the first node from the scheduling list; 2)

allocating the node to a processor which allows the earliest

start-time. Dynamic list scheduling takes a different

approach. After each allocation, the priorities of all

unscheduled nodes are re-computed, and consequently the

scheduling list is then rearranged. In this case, the tasks do

not have a pre-computed priority. At each scheduling step,

each ready task is tentatively scheduled to each processor,

and the best task-processor pair is selected. Both the task and

its destination processor are selected at the same time. Thus,

these algorithms essentially employ the following three-step

approaches: 1) determining new priorities of all unscheduled

nodes; 2) selecting the node with the highest priority for

scheduling; 3) allocating the node to the processor that

allows the earliest start-time or earliest finish-time.

Scheduling algorithms that employ this three-step approach

can potentially generate better schedules, but the tradeoff is

the scheduling time is increased.

Both static and dynamic approaches of list scheduling have

their advantages and drawbacks in terms of the schedule

quality they produce. Static approaches are better suited for

communication-intensive and irregular problems, where

selecting important tasks first is more crucial. Dynamic

approaches are better suited for computationally intensive

applications with a high degree of parallelism, because these

algorithms focus on obtaining good processor utilization.

2.3.3 MULTIPLE TASK MAPPING AND SCHEDULING

 In this paper, we analyze the behavior of multiple task

(multiple DAG) computing in a heterogeneous environment,

therefore the objective of this research is to study multiple

DAG scheduling. However, there is little literature in this

area. Iverson presents a dynamic, competitive scheduling of

multiple DAGs [IvÖ98]. In his framework, each task is

responsible for scheduling (0f)its own tasks. Thus, there is

no centralized scheduling authority. A task is scheduled

without the knowledge of other tasks; the task scheduler only

knows the current workload of the network. Iverson’s

algorithm is based on the expectation that if each task had

the best mapping and scheduling possible, the overall

parallel computing performance would be optimal.

III. PROBLEM STATEMENT

Aiming to provide a non-preemptive scheduling to minimize

the maximum completion time given a set of independent

computational tasks, to obtain acceptable performance and

allocation of application processes to the processors

available

3.1 EXISTING SYSTEM

A Symmetric Multiprocessor (SMP) system consisting of m

processors is addressed. The problem of preemptively

scheduling a real-time task set on these systems can be

solved in two different ways: by partitioning tasks to

processors or with a global scheduler. In the first case, tasks

are allocated to processors at design time with an offline

procedure. The partitioning problem is analogous to the bin

packing problem, which is known to be NP-hard in the

strong sense. However, once the tasks are allocated, the

scheduling problem is reduced to m single-processor

scheduling problems, for which optimal solutions are known

when preemptions are allowed. The main advantage of this

approach is, its simplicity and efficiency. The efficiency of

Node t-level b-level p-level

N 1 0 36 5

N 2 8 19 4

N 3 6 18 2

N 4 14 12 2

N 5 16 11 3

N 6 14 22 8

N 7 11 11 6

N 8 26 7 7

N 9 29 1 1

Naveen Kumar Laskari, Aparna Tanam, Ranganath K / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp. 1536-1546

1540 | P a g e

the system depends on the frequency at which load-

balancing routines are called and on the complexity of these

algorithms. An alternate solution is a global work-conserving

scheduler where migration from one processor to another is

allowed during a task lifetime.

3.2 LIMITS OF THE EXISTING SYSTEM

Global Scheduling algorithms are based on the concept of

quantum (or slot) and at each quantum, the scheduler

allocates tasks to processors. A disadvantage of this

approach is that all processors need to synchronize at the

quantum boundary, when the scheduling decision is taken.

Moreover, if the quantum is small, the overhead in terms of

the number of context switches and migrations may be too

high. To obtain inexpensive computational cycles, grid

technology has emerged to fulfill the needs for solving large-

scale computing intensive high-throughput applications[1],

through the aggregation of a number of available resources.

Task independent applications such as data mining, Monte

Carlo, image manipulations are most suitable class of

applications that uses a wide spectrum of techniques like

branch & bound, integer programming, searching, graph

theory& randomization.

3.3 PROPOSED SOLUTION

A method is developed, aiming to provide a non-preemptive

scheduling to minimize the maximum completion time. We

perform the experiment using a widely used scheduling

simulator, then present and compare our proposed algorithm

with two traditional well-known scheduling algorithms. The

proposed algorithm generates in most of cases better

solutions than the referenced algorithms in terms of the

maximum completion times. We have developed a

method for scheduling of task independent parallel

applications in Multiprocessor Environments. Essentially,

the Task Threshold-based Mapping method (TMM), tasks

are distributed to computing nodes based on defined

thresholds.

3.3.1 BASIC CONCEPTS AND TERMINOLOGY

Although many types of resources can be shared and used in

a Computational Multiprocessor Model, normally they are

accessed through an application running in the grid.

Normally, an application is used to define the piece of work

of higher level in the Grid. A typical grid scenario is as

follows: an application can generate several jobs, which in

turn can be composed of sub-tasks, in order to be solved; the

Multiprocessor System is responsible for sending each sub-

task to a resource to be solved. In a simpler grid scenario, it

is the user who selects the most adequate machine to execute

its sub-tasks. However, in general, Multiprocessor Systems

must dispose of schedulers that automatically and efficiently

find the most appropriate machines to execute an assembly

of tasks.

3.3.2 SCHEDULING PROBLEMS IN COMPUTATIONAL

MULTIPROCESSOR MODELS

Rather than a problem, scheduling in Multiprocessor

Systems can be viewed as a whole family of problems. This

is due to the many parameters that intervene scheduling as

well as to the different needs of Grid-enabled applications. In

the following, we give some basic concepts of scheduling in

Multiprocessor Systems and identify most common

scheduling types. Needless to say, job scheduling in its

different forms is computationally hard; it has been shown

that the problem of finding optimum scheduling in

heterogeneous systems is in general NP-hard.

3.3.3 NEW CHARACTERISTICS OF SCHEDULING IN GRIDS

The scheduling problem in distributed systems is not new at

all; as a matter of fact it is one of the most studied problems

in the optimization research com- munity. However, in the

grid setting there are several characteristics that make the

problem different from its traditional version of conventional

distributed systems. Some of these characteristics are the

following:

• The dynamic structure of the Computational

Multiprocessor Model. Unlike traditional distributed systems

such as clusters, resources in a Multiprocessor System can

join or leave the Grid in an unpredictable way. It could be

simply due to loosing connection to the system or because

their owners switch off the machine or change the operating

system, etc. Given that the resources cross different

administrative domains, there is no control over the

resources.

• The high heterogeneity of resources. Multiprocessor

Systems act as large virtual super- computers, yet the

computational resources could be very disparate, ranging

from laptops, desktops, clusters, supercomputers and even

small devices of limited computational resources. Current

Grid infrastructures are not yet much versatile but

heterogeneity is among most important features to take into

account in any Multiprocessor System.

• The high heterogeneity of jobs. Jobs arriving to any

Multiprocessor System are diverse and heterogeneous in

terms of their computational needs. For instance, they could

be computing intensive or could be data intensive; some jobs

could be full applications having a whole range of

specifications other could be just atomic tasks. Importantly,

Multiprocessor System could not be aware of the type of

tasks, jobs or applications arriving in the system.

• The high heterogeneity of interconnection networks. Grid

resources will be connected through Internet using different

interconnection networks. Trans- mission costs will often be

very important in the overall Grid performance and hence

smart ways to cope with the heterogeneity of interconnection

networks is necessary.

• The existence of local schedulers in different organizations

or resources. Grids are expected to be constructed by the

“contribution” of computational resources across institutions,

universities, enterprises and individuals. Most of these

resources could eventually be running local applications and

use their local schedulers, say, a Condor batch system. In

Naveen Kumar Laskari, Aparna Tanam, Ranganath K / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp. 1536-1546

1541 | P a g e

such cases, one possible requirement could be to use the

local scheduler of the domain rather than an external one.

• The existence of local policies on resources. Again, due to

the different owner- ship of the resources, one cannot assume

full control over the Grid resources.

Companies might have unexpected computational needs and

may decide to reduce their contribution to the Grid. Other

policies such as rights access, available storage, pay-per-use,

etc. are also to be taken into account.

• Job-resource requirements: Current Grid schedulers assume

full availability and compatibility of resources when

scheduling. In real situations, however, many restrictions

and/or incompatibilities could be derived from job and

resource specifications.

• Large scale of the Multiprocessor System: Multiprocessor

Systems are expected to be large scale, joining hundreds or

thousands of computational nodes world-wide. Moreover,

the jobs, tasks or applications submitted to the Grid could be

large in number since different independent users and/or

applications will send their jobs to the Grid without knowing

previous workload of the system. Therefore, the efficient

management of resources and planning of jobs will require

the use of different types of scheduling (super-schedulers,

meta-schedulers, decentralized schedulers, local schedulers,

resource brokers, etc.) and their possible hierarchical

combinations.

• Security: This characteristic, which exists in classical

scheduling, is an important issue in Multiprocessor

Scheduling. Here the security can be seen as a two-fold

objective: on the one hand, a task, job or application could

have a security requirement to be allocated in a secure node,

that is, the node will not “watch” or access the processing

and data used by the task, job or application. On the other

hand, the node could have a security requirement, that is, the

task, job or application running in the resource will not

“watch” or access other data in the node.

3.4 PHASES OF SCHEDULING IN GRIDS

In order to perform the scheduling process, the Grid

scheduler has to follow a series of steps which could be

classified into five blocks: (1) Preparation and information

gathering on tasks, jobs or applications submitted to the

Grid; (2) Resource selection; (3) Computation of the

planning of tasks (jobs or applications) to selected resources;

(4) Task (job or application) allocation according to the

planning (the mapping of tasks, jobs or applications to

selected resources); and, (5) Monitoring of task, job or

application completion (the user is referred to for a detailed

description). The Grid scheduler will have access to the

Multiprocessor Information on available resources and tasks,

jobs or applications (usually known as “Multiprocessor

Information Service” in the Grid literature). Moreover, the

scheduler will be informed about updated information

(according to the scheduling mode). This information is

crucial for the scheduler in order to compute the planning of

tasks, jobs or applications to the resources. Resource

selection: Not all resources could be candidates for

allocation of task, jobs or applications. Therefore, the

selection process is carried out based on job requirements

and resource characteristics. The selection process, again,

will depend on the scheduling mode. For instance, if tasks

were to be allocated in a batch mode, a pool of as many as

possible candidate resources will be identified out of the set

of all available resources. The selected resources are then

used to compute the mapping that meets the optimization

criteria. As part of resource selection, there is also the

advanced reservation of resources. Information about future

execution of tasks is crucial in this case. Although the queue

status could be useful in this case, it is not accurate,

especially if priority is one of the task requirements. Another

alternative is using prediction methods based on historical

data or user’s specifications of job requirements.

3.4.1 TASK ALLOCATION

 In this phase the planning is made effective: tasks (jobs or

applications) are allocated to the selected resources

according to the planning.

3.4.2 TASK EXECUTION MONITORING

 Once the allocation is done, the monitoring will inform

about the execution progress as well as possible failures of

jobs, which depends on the scheduling policy will be

rescheduled again (or migrated to another resource).

3.5 COMPUTATION MODELS FOR FORMALIZING

MULTIPROCESSOR SCHEDULING

Given the versatility of scheduling in Multiprocessor

environments, one needs to consider different computation

models for Multiprocessor Scheduling that would allow to

formalize, implement and evaluate either in real Grid or

through simulation, different scheduling algorithms. We

present some important computation models for

Multiprocessor Scheduling. It should be noted that such

models have much in common with computation models for

scheduling in distributed computing environments. We

notice that in all the models described below, tasks, jobs or

applications are submitted for completion to a single

resource.

3.5.1 EXPECTED TIME TO COMPUTATIONAL MODEL

In the model proposed by Ali et al. [5], it is assumed that we

dispose of estimation or prediction of the computational load

of each task (e.g. in millions of instructions), the computing

capacity of each resource (e.g. in millions of instructions per

second, MIPS), and an estimation of the prior load of each

one of the resources. Moreover, the Expected Time to

Compute matrix ETC of size number of tasks by number of

machines, where each position ET C [t][m] indicates the

expected time to compute task t in resource m, is assumed to

be known or computable in this model. In the simplest of

cases, the entries ETC [t][m] could be computed by dividing

the workload of task t by the computing capacity of resource

m. This formulation is usually feasible, since it is possible to

know the computing capacity of resources while the

computation need of the tasks (task workload) can be known

Naveen Kumar Laskari, Aparna Tanam, Ranganath K / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp. 1536-1546

1542 | P a g e

from specifications provided by the user, from historic data

or from predictions

3.5.2 MODELLING HETEROGENEITY AND CONSISTENCY OF

COMPUTING

The ETC matrix model is able to describe different degrees

of heterogeneity in distributed computing environment

through consistency of computing. The consistency of

computing refers to the coherence among execution times

obtained by a machine with those obtained by the rest of

machines for a set of tasks. This feature is particularly

interesting for Multiprocessor Systems whose objective is to

join in a single large virtual computer different resources

ranging from laptops and PCs to clusters and

supercomputers. Thus, three types of consistency of

computing environment can be defined using the properties

of the ETC matrix: consistent, inconsistent and semi-

consistent. An ETC matrix is said to be consistent, if for

every pair of machines mi and mj , if mi executes a job faster

than mj then mi executes all the jobs faster than mj. In

contrast an inconsistent ETC matrix, a machine mi may

execute some jobs faster than another machine mj and some

jobs slower than the same machine mj . Partially-consistent

ETC matrices are inconsistent matrices having a consistent

sub-matrix of a predefined size. Further, the ETC matrices

are classified according to the degree of job heterogeneity,

machine heterogeneity and consistency of computing. Job

heterogeneity expresses the degree of variance of execution

times for all jobs in a given machine. Machine heterogeneity

indicates the variance of the execution times of all machines

for a given job.

3.5.3 MULTIPROCESSOR INFORMATION SYSTEM MODEL

The computation models for Multiprocessor Scheduling

presented so far allow for a precise description of problem

instance however they are based on predictions, distributions

or simulations. Currently, other Multiprocessor Scheduling

models are developed from a higher level perspective. In the

Multiprocessor Information System model the Grid

scheduler uses task (job or application file descriptions) and

resource file descriptions as well as state information of

resources (CPU usage, number of running jobs per grid

resource), provided by the Multiprocessor Information

System. The Grid scheduler then computes the best matching

of tasks to resources based on the up-to-date workload

information of resources. This model is more realistic for

Multiprocessor Environments and is especially suited for the

implementation of simple heuristics such as FCFS (First

Come First Served), EDF (Earliest Deadline First), SJF

(Shortest Job First), etc.

3.5.4 CLUSTER AND MULTI-CLUSTER GRIDS MODEL

Cluster and Multi-Cluster Grids refer to Grid model in which

the system is made up of several clusters. For instance the

Cluster Grid of an enterprise comprises different clusters

located at different departments of the enterprise. One main

objective of cluster grids is to provide a common computing

infrastructure at enterprise or department levels in which

computing services are distributed to different clusters. More

generally, clusters could belong to different enterprises and

institutions, that is, are autonomous sites having their local

users (both local and grid jobs are run on resources) and

usage policies. The most common scheduling problem in

these models is a Grid scheduler which makes use of local

schedulers of the clusters. The benefit of cluster grids is to

maximize the usage of resources and at the same time,

increase of throughput for user tasks (jobs or applications).

3.6 MULTIPROCESSOR SYSTEM PERFORMANCE AND

SCHEDULING OPTIMIZATION CRITERIA

Several performance requirements and optimization criteria

can be considered for Multiprocessor Scheduling problem

the problem is multi-objective in its general formulation. We

could distinguish proper Multiprocessor System performance

criteria from scheduling optimization criteria although both

performance and optimization objectives allow to establish

the overall Multiprocessor System performance.

Multiprocessor System performance criteria include: CPU

utilization of Grid resources, load balancing, system usage,

queuing time, throughput, turnaround time, cumulative

throughput (i.e. cumulative number of completed tasks)

waiting time and response time. In fact other criteria could

also be considered for characterizing Multiprocessor

System’s performance such as deadlines, missed deadlines,

fairness, user priority, resource failure, etc. Scheduling

optimization criteria include: makespan, flowtime, resource

utilization, load balancing, matching proximity, turnaround

time, total weighted completion time, lateness, weighted

number of hardy jobs, weighted response time, etc. Both

performance criteria and optimization criteria are desirable

for any Multiprocessor System; however, their achievement

also depends on the considered model (batch system,

interactive system, etc.). Importantly, it should be stressed

that these criteria are conflicting among them; for instance,

minimizing makespan conflicts with resource usage and

response time. Among most popular and extensively studied

optimization criterion is the minimization of the makespan.

Makespan is an indicator of the general productivity of the

Multiprocessor System: small values of makespan mean that

the scheduler is providing good and efficient planning of

tasks to resources. Considering makespan as a stand-alone

criterion necessarily may not imply optimization of other

objectives. As mentioned above, its optimization could in

fact go in detriment to other optimization criteria. Another

important optimization criterion is that of flowtime, which

refers to the response time to the user submissions of task

executions. Minimizing the value of flowtime means

reducing the average response time of the Multiprocessor

System. Essentially, we want to maximize the productivity

(throughput) of the grid and at the same time we want to

obtain planning of tasks to resources that offer an acceptable

QoS.

MAKESPAN, COMPLETION TIME AND FLOWTIME

In Multiprocessor Scheduling we can minimize the

makespan and flowtime. Makespan is the time when finishes

the latest task and flowtime is the sum of finalization times

of all the tasks. Formally they can define as:

Naveen Kumar Laskari, Aparna Tanam, Ranganath K / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp. 1536-1546

1543 | P a g e

 minimization of makespan :

 minSi ∈ Sched{maxj ∈ Jobs Fj }

Where Fj denotes the time when the task j finalizes, Sched is

the set of all possible schedules and Jobs the set of all jobs to

be scheduled. Note that makespan is not affected by any

particular execution order of tasks in a concrete resource,

while in order to minimize flowtime of a resource, tasks that

have been assigned to should be executed in a ascending

order of their workload (computation time).Completion time

of a machine m is the time in which machine m will finalize

the processing of the previous assigned tasks as well as of

those already planned tasks for the machine. This parameter

measures the previous workload of a machine. Notice that

this definition requires knowing both the ready time for a

machine and the expected time to complete of the tasks

assigned to the machine. The expression of makespan,

flowtime and completion time depends on the computational

model. For instance, in the ETC model, completion[m] is

calculated as follows: where ready times[m] is the time when

machine m will have finished the previously assigned tasks.

Makespan can be expressed in terms of the completion time

of a resource, as follows:

Makespan = Max {completion[i]/i€ Machines}

Similarly, for the flowtime we use the completion times of

machines, but now by first sorting in ascending order

according to their ETC values the tasks assigned to a

machine.

3.7 PROPOSED SCHEDULING MODEL

As one of the means to obtain inexpensive computational

cycles, grid technology has emerged to fulfill the needs for

solving large-scale computing intensive high-throughput

applications, through the aggregation of a number of

available resources. Multiple users can simultaneously utilize

any of resources interconnected to execute these large

parallel applications. To effectively utilize hybrid

heterogeneous computational resources, resource

management and task scheduling are fundamental factors for

achievements in grids. Due to wide distribution and

heterogeneity characteristics of grid platforms, loosely

coupled parallel applications are better suited for execution

on this platform than tightly coupled ones [5, 6]. In

particular, task independent applications such as data mining,

Monte Carlo, image manipulation are most suitable class of

applications for current design of Multiprocessor

Environments. Scheduling task independent applications is

still far to be considered well-established. Finding optimal

scheduling is an NP-complete problem, and researchers have

still resorted to devising efficient heuristics. A number of

heuristics have been proposed based on a wide spectrum of

techniques, including branch-and-bound, integer-

programming, searching, graph-theory, randomization,

genetic algorithms, and evolutionary methods [3, 4]. These

algorithms are based on diverse assumptions; they differ in

their functionalities as well. Simulation and modeling have

been dedicated and extensively used by professionals in

different application fields, particularly, in the area of

computer science. e.g., for microprocessor design and

network protocol design, in which simulation and modeling

have been used for decades. They are convenient and cost

effective. In Multiprocessor computing, several widely used

and acknowledged simulations have been commonly used to

evaluate tasks scheduling and load balancing. In this paper, a

promising method is developed, aiming to provide a non-

preemptive scheduling to minimize the maximum

completion time (the schedule length or makespan) ,given a

set of independent computational tasks to obtain acceptable

performance is a good allocation of application processes to

the processors available. We perform the experiment using a

widely used scheduling simulator, then present and compare

our proposed algorithm with two traditional well-known

scheduling algorithms. The proposed algorithm generates in

most of cases better solutions than the referenced algorithms

in terms of the maximum completion times. Task scheduling

in dynamic and heterogeneous computing environment such

as Grid is not trivial, since major concerns that arise during

the analysis and development of strategies for such purpose

is to search alternatives to improve throughput and

utilization in these computing platforms. Looking at the

nature of task independent applications, the scheduling

process may seem to be easy due to its simplicity. However,

due to dynamic behavior and heterogeneity of resources, not

only they may not provide similar performance for all

applications, but also contention created among applications

running on same shared resources, causing delays and

affecting the quality of service [2] [6].

Figure 2: Proposed two level scheduling method.

IV. IMPLEMENTATION

Given a set of independent tasks, each task of this set is

classified into one of five defined levels, say A, B, C, D and

E (A is most time demanding while E is less demanding),

according to the execution time needed. Computing nodes in

each site of grid platform are rated according to their

computing power, that is, given MCC as Maximum

Computing Capability of any node in a grid platform,

computing nodes are rated and classified in a particular class

if this node’s computing power is X% of MCC.

Naveen Kumar Laskari, Aparna Tanam, Ranganath K / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp. 1536-1546

1544 | P a g e

Node Computing

Capability

Level of

Classification

0%~20% MCC E

21%~40% MCC D

41%~60% MCC C

61%~80% MCC B

81%~100% MCC A

Table 2- Level of Classification

In order to classify a computing site, we just need to look at

highest rank achieved by any of computing nodes inside this

site. For instance, a site contains 3 computing nodes, with

levels of classification B, C, and D. Thus, this site is ranked

with level B. That is, Level Classification SITE = max level

{node1, node2… node n} our proposed method work as

follows. A task is distributed, and shown next to Grid

scheduler. Based on Round Robin technique, the Grid

scheduler selects next suitable site to the execution of that

given task, matching a suitable site to the demand need for

the given task. As for matching process, task ranked with

level A is expected to be distributed to a site ranked with

level A, while task ranked with level D is expected to be

distributed to sites ranked with levels A, B, C and D. As

soon as the task is assigned to a particular site, the LRM

(Local resource manager) of that site accepts that task, and

then assigns it to the next available computing node that

meets such threshold.

In experimental results as shown in below figures 3, 4 & 5

using Task-Scheduler, we could demonstrate its viability and

effectiveness in a distributed computing environment, where

in the three different nodes are scheduled by scheduler.

IN OTHER WORDS, THE PROPOSED METHOD IS AS FOLLOWS

1. Tasks are randomly generated, and they differ among

themselves in amount of workload,

2. Based on the group of tasks generated, Grid Scheduler

record tasks’ workload values MAX and MIN, according to

the set of tasks given.

3. Analyzing the workload of tasks, tasks are classified into

classes based on the amount of workload contained in it.

Similarly, computing nodes in sites of grid platform are

completely scanned, to discover values MAX and MIN,

according to computing nodes’ computing capabilities, so

that these computing nodes are then classified.

4. Tasks in queue are presented serially to the Grid

scheduler, whose function is to send task to a selected site of

a grid platform, corresponding the workload and existing

computing capability available in that site. If matches, this

task is sent to the LRM of that site. Otherwise, the Grid

Scheduler compares with next available site, according to

RR (Round Robin) policy.

 5. The process is repeated until all tasks inside the queue are

distributed to sites, emptying completely the queue. The

main objective of our experiments is to evaluate the

performance of TTM over well known scheduling

algorithms, First Come First Serve (FCFS) and Shortest Job

First (SJF). We performed our experimentation evaluations

in the heterogeneity of grid sites, through the heterogeneity

and various granularities of application tasks. Experimental

results of the proposed scheduling method are obtained using

custom simulation model.

Figure-3: System1-IP Address: 192.168.0.2

Figure 4: System2-IP Address: 192.168.0.3

Naveen Kumar Laskari, Aparna Tanam, Ranganath K / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp. 1536-1546

1545 | P a g e

Figure 5: System3-IP Address: 192.168.0.22

V. CONCLUSION:

Advances in computing and network technologies have

rapidly accelerated the development of distributed

computing. Cluster computing platforms have been built by

interconnecting a number of homogeneous or heterogeneous

computers. Grid technology is developed aiming at the

sharing of resources distributed in different geographical

locations, providing large amount of computing cycles to

speed up the execution of parallel applications. In this paper,

we have presented a promising yet efficient scheduling

method in Multiprocessor Environments, in order to provide

high throughput. Through experimental results using Task-

Scheduler, we could demonstrate its viability and

effectiveness in such a distributed computing environment.

VI. FUTURE ENHANCEMENTS

As future work, the inclusion of task scheduling that

involves communication among them can be taken up. This

also means that apart from the considerations on the

possibility of dependencies among tasks, the following also

should be taken care so as to provide high levels of

availability and reliability in the Multiprocessor Scheduling

.The monitoring of computing node availability, Dynamic

network traffic and Bandwidth, As well as the fault

tolerance, which is very important on MP systems.

 REFERENCES:

[1] H. Casanova, A. Legrand, M. Quinson, “SimGrid: A

Generic Framework for Large-Scale Distributed

Experiments”, in Proceedings of UKSIM 2008, The Tenth

International Conference on Computer Modeling and

Simulation, pp. 126 – 131, 2008.

[2] F. Dong and S.G. Akl, “Scheduling algorithms for

Multiprocessor computing: state of the art and open

problems”, School of Computing, Queen’s University,

Technical report no. 2006-504, 2006.

[3] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms

for allocating directed task graphs to multiprocessors”, ACM

Computing Surveys, Volume 31, Issue 4, pp. 406 – 471,

1999.

[4] D. Menasce, D. Saha, S. Porto, V. Almeida, and S.

Tripathi, “Static and dynamic processor scheduling

disciplines in heterogeneous parallel architectures”, in JPDC

Journal of Parallel and Distributed Computing, vol. 28, issue

1, pp. 1-18, 1995.

[5] O. Moreira, F. Valente, M. Bekooij, “Scheduling

multiple independent hard-real-time jobs on a heterogeneous

multiprocessor”, in Proceedings of EMSOFT '07 The 7th

ACM & IEEE international conference on Embedded

software, 2007.

[6] D. P. Silva, W. Cirne, and F.V. Brasileiro, “Trading

Cycles for Information: Using Replication to Schedule Bag-

of-Tasks Applications on Computational multiprocessor

models”, in Proceedings of Euro Par’2003, LNCS2790,

pp.169-180, 2003.

AUTHORS

Naveen Kumar Laskari, Aparna Tanam, Ranganath K / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp. 1536-1546

1546 | P a g e

Mr. Naveen Kumar Laskari, has received

the Bachelor Degree and Master Degree

from JNT University, Hyderabad, India. He

is Assistant Professor in the Department of

Computer Science and Engineering in

Hyderabad Institute of Technology and

Management [HITAM], Hyderabad, A.P, India. He has

presented papers and participated in number of seminars

and workshops across India. His Research interest includes

Grid Computing, Image Processing, Data Mining and

Information Security.

Mrs. Aparna Tanam, has received her

Bachelor Degree from Nagpur University,

Masters Degree from JNT University,

Hyderabad, India. She is an Associate

Professor of Information Technology

department in JB Institute of Engineering

and Technology [JBIET], Hyderabad, India. Her research

interest includes Grid Computing, Image Processing and

Data Mining.

Mr K Ranganath, Graduated in Computer

Science and Engineering from Osmania

University Hyderabad, India, in 2006 and

M.Tech in Software Engineering from

Jawaharlal Nehru Technological University,

Hyderabad, A.P., India. He is presently

working as Assistant Professor in Department of Computer

Science and Engineering, Hyderabad institute of Technology

and Management [HITAM], Hyderabad, A.P, India. A keen

research scholar and has many papers published to his credit.

His research interests include Mobile Computing and Data

Mining.

